IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-33597-7_32.html
   My bibliography  Save this book chapter

Eine sanfte Einführung ins Lernen tiefer neuronaler Netze

In: Künstliche Intelligenz im Gesundheitswesen

Author

Listed:
  • Andreas K. Maier

    (Lehrstuhl für Mustererkennung (Informatik 5))

Abstract

Zusammenfassung In diesem Kapitel wird versucht, eine sanfte Einführung in das tiefe Lernen in der medizinischen Bildverarbeitung zu geben, von theoretischen Grundlagen bis hin zu Anwendungen. Es werden zunächst allgemeine Gründe für die Popularität von Deep Learning diskutiert, einschließlich einiger wichtiger Durchbrüche in der Informatik. Als erstes wird mit den Grundlagen des Perzeptrons und neuronalen Netzen begonnen. Auf dieser Basis werden die Gründe für den Erfolg von Deep Learning in vielen Anwendungsbereichen verständlich. Offensichtlich ist die medizinische Bildverarbeitung einer dieser Bereiche, der von diesem raschen Fortschritt weitgehend profitiert, insbesondere bei der Bild- und Objekterkennung, der Bildsegmentierung, der Bildregistrierung und der computergestützten Diagnose. Es gibt auch aktuelle Trends in der physikalischen Simulation, Modellierung und Rekonstruktion, die zu erstaunlichen Ergebnissen geführt haben. Einige dieser Ansätze vernachlässigen jedoch Vorwissen und bergen daher das Risiko, nichtplausible Ergebnisse zu erzielen. Diese offensichtlichen Schwächen verdeutlichen die aktuellen Grenzen des tiefen Lernens. Es werden jedoch auch kurz vielversprechende Ansätze diskutiert, mit denen diese Probleme möglicherweise in Zukunft gelöst werden können.

Suggested Citation

  • Andreas K. Maier, 2022. "Eine sanfte Einführung ins Lernen tiefer neuronaler Netze," Springer Books, in: Mario A. Pfannstiel (ed.), Künstliche Intelligenz im Gesundheitswesen, chapter 0, pages 679-696, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-33597-7_32
    DOI: 10.1007/978-3-658-33597-7_32
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-33597-7_32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.