IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-39869-8_5.html
   My bibliography  Save this book chapter

Forecasting Demand for Fashion Goods:A Hierarchical Bayesian Approach

In: Intelligent Fashion Forecasting Systems: Models and Applications

Author

Listed:
  • Phillip M. Yelland

    (Google Inc.)

  • Xiaojing Dong

    (Santa Clara University)

Abstract

A central feature of demand for products in the fashion apparel segment is a pronounced product life cycle—demand for a fashion product tends to rise and fall dramatically in accordance with the rate of public of adoption. Product demands that vary in such a manner can be difficult to forecast, especially in the critical early period of a product’s life, when observed demand can be a very unreliable yardstick of demand later on. This paper examines the applicability of a Bayesian forecasting model—based on one developed for use in the computer industry—to fashion products. To do so, we use an agent-based simulation to produce a collection of demand series consistent with commonly-accepted characteristics of fashion adoption. Using Markov chain Monte Carlo techniques to make predictions using the Bayesian model, we are able quantitatively to demonstrate its superior performance in this application.

Suggested Citation

  • Phillip M. Yelland & Xiaojing Dong, 2014. "Forecasting Demand for Fashion Goods:A Hierarchical Bayesian Approach," Springer Books, in: Tsan-Ming Choi & Chi-Leung Hui & Yong Yu (ed.), Intelligent Fashion Forecasting Systems: Models and Applications, edition 127, chapter 0, pages 71-94, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-39869-8_5
    DOI: 10.1007/978-3-642-39869-8_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fallah Tehrani, Ali & Ahrens, Diane, 2016. "Enhanced predictive models for purchasing in the fashion field by using kernel machine regression equipped with ordinal logistic regression," Journal of Retailing and Consumer Services, Elsevier, vol. 32(C), pages 131-138.
    2. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    3. Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
    4. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    5. Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-39869-8_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.