IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-38433-2_70.html
   My bibliography  Save this book chapter

Study on Fault Classification of Power-Shift Steering Transmission Based on v-Support Vector Machine

In: The 19th International Conference on Industrial Engineering and Engineering Management

Author

Listed:
  • Yuan Zhu

    (Academy Military Transportation)

  • Ying-feng Zhang

    (Academy Military Transportation)

  • Ai-yong Du

    (Academy Military Transportation)

Abstract

This paper focused on the condition monitoring problem of the Power-Shift Steering Transmission (PSST). Spectrometric oil analysis is an important way to study the running state of PSST. Because of complicated nonlinear relationship in oil analysis data, a model of PSST’ fault classification based on v- Support Vector Machine (v-SVM) is proposed. The fundamental of v-SVM is researched. The influence of model parameters for performance of v-SVM is analyzed. Experimental results show that, comparing with C-support vector machine and BP neural network, the v-support vector machine has good properties in research of fault classification of PSST.

Suggested Citation

  • Yuan Zhu & Ying-feng Zhang & Ai-yong Du, 2013. "Study on Fault Classification of Power-Shift Steering Transmission Based on v-Support Vector Machine," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 647-654, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-38433-2_70
    DOI: 10.1007/978-3-642-38433-2_70
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-38433-2_70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.