IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-38433-2_65.html
   My bibliography  Save this book chapter

The Interval Estimation of MTBF Based on Markov Chain Monte Carlo Method

In: The 19th International Conference on Industrial Engineering and Engineering Management

Author

Listed:
  • Yi Dai

    (Tianjin University of Technology and Education)

  • Bin-quan Li

    (Tianjin University of Technology and Education)

Abstract

The distribution of time between failures of numerical control (NC) system follows the Weibull distribution, thus it’s estimation of Mean Time Between Failures (MTBF) in reliability engineering is of significance. But there are great difficulties in interval estimation of MTBF using traditional method for Weibull distribution. After the introduction of the approximate estimation, the Markov chain Monte Carlo (MCMC) method is proposed. Combined with the specific characteristics of two-parameter Weibull distribution, Markov chain is established to calculate the interval estimation of MTBF, which solves the problems effectively. And MCMC is more accurate than that of engineering approximation. By analyzing various results in different conditions of MCMC transition kernel, the paper proves that MCMC is a good method for solving interval estimation of Weibull distribution parameters, which has systematic solution process and good adaptability. It greatly enhanced the robustness, effectiveness and accuracy of the calculation.

Suggested Citation

  • Yi Dai & Bin-quan Li, 2013. "The Interval Estimation of MTBF Based on Markov Chain Monte Carlo Method," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 599-607, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-38433-2_65
    DOI: 10.1007/978-3-642-38433-2_65
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-38433-2_65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.