IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-38391-5_153.html
   My bibliography  Save this book chapter

Application of Noise Estimator with Limited Memory Index on Flexure Compensation of Rapid Transfer Alignment

In: The 19th International Conference on Industrial Engineering and Engineering Management

Author

Listed:
  • Wei-dong Zhou

    (Harbin Engineering University)

  • Yu-ren Ji

    (Harbin Engineering University)

Abstract

In order to solve the flexure compensation problem in rapid transfer alignment, the error equations are simplified by noise compensation method firstly. Due to the time variant characteristics of flexure process in time domain, which leads to the fixed noise statistical characteristics cannot follow the variation of actual environment, the noise estimator with limited memory index is proposed. By limiting the memory length of obtained data, too old historical data is giving up and the accuracy of online noise estimator is improved. The final simulation verifies that the method proposed have higher accuracy and faster convergence speed than conventional methods.

Suggested Citation

  • Wei-dong Zhou & Yu-ren Ji, 2013. "Application of Noise Estimator with Limited Memory Index on Flexure Compensation of Rapid Transfer Alignment," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 1447-1456, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-38391-5_153
    DOI: 10.1007/978-3-642-38391-5_153
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-38391-5_153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.