IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-35730-8_7.html
   My bibliography  Save this book chapter

Artificial Neural Networks: A New Approach to Modelling Interregional Telecommunication Flows

In: Spatial Analysis and GeoComputation

Author

Listed:
  • S. Gopal

Abstract

This paper suggests a new modelling approach, based upon a general nested sigmoid neural network model. Its feasibility is illustrated in the context of modelling interregional telecommunication traffic in Austria and its performance is evaluated in comparison with the classical regression approach of the gravity type. The application of this neural network approach may be viewed as a three-stage process. The first stage refers to the identification of an appropriate network from the family of two-layered feedforward networks with three input nodes, one layer of (sigmoidal) intermediate nodes and one (sigmoidal) output node. There is no general procedure to address this problem. We solved this issue experimentally. The input-output dimensions have been chosen in order to make the comparison with the gravity model as close as possible. The second stage involves the estimation of the network parameters of the selected neural network model. This is performed via the adaptive setting of the network parameters (training, estimation) by means of the application of a least mean squared error goal and the error back-propagating technique, a recursive learning procedure using a gradient search to minimise the error goal. Particular emphasis is laid on the sensitivity of the network performance to the choice of the initial network parameters as well as on the problem of overfitting. The final stage of applying the neural network approach refers to the testing of the interregional teletraffic flows predicted. Prediction quality is analysed by means of two performance measures, average relative variance and the coefficient of determination, as well as by the use of residual analysis. The analysis shows that the neural network model approach outperforms the classical regression approach to modelling telecommunication traffic in Austria.

Suggested Citation

  • S. Gopal, 2006. "Artificial Neural Networks: A New Approach to Modelling Interregional Telecommunication Flows," Springer Books, in: Spatial Analysis and GeoComputation, chapter 7, pages 103-128, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-35730-8_7
    DOI: 10.1007/3-540-35730-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-35730-8_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.