IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-35730-8_10.html
   My bibliography  Save this book chapter

Optimisation in an Error Backpropagation Neural Network Environment with a Performance Test on a Spectral Pattern Classification Problem

In: Spatial Analysis and GeoComputation

Author

Listed:
  • P. Staufer

Abstract

This paper attempts to develop a mathematically rigid framework for minimising the cross-entropy function in an error backpropagating framework. In doing so, we derive the backpropagation formulae for evaluating the partial derivatives in a computationally efficient way. Various techniques of optimising the multiple-class cross-entropy error function to train single hidden layer neural network classifiers with softmax output transfer functions are investigated on a real world multispectral pixel-by-pixel classification problem that is of fundamental importance in remote sensing. These techniques include epoch-based and batch versions of backpropagation of gradient descent, PR-conjugate gradient, and BFGS quasi-Newton errors. The method of choice depends upon the nature of the learning task and whether one wants to optimise learning for speed or classification performance. It was found that, comparatively considered, gradient descent error backpropagation provided the best and most stable out-of-sample performance results across batch and epoch-based modes of operation. If the goal is to maximise learning speed and a sacrifice in classification accuracy is acceptable, then PR-conjugate gradient error backpropagation tends to be superior. If the training set is very large, stochastic epoch-based versions of local optimisers should be chosen utilising a larger rather than a smaller epoch size to avoid unacceptable instabilities in the classification results.

Suggested Citation

  • P. Staufer, 2006. "Optimisation in an Error Backpropagation Neural Network Environment with a Performance Test on a Spectral Pattern Classification Problem," Springer Books, in: Spatial Analysis and GeoComputation, chapter 10, pages 183-207, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-35730-8_10
    DOI: 10.1007/3-540-35730-0_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-35730-8_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.