IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-52827-4_4.html
   My bibliography  Save this book chapter

Measuring and Visualizing Associations

In: Statistical Tools for Program Evaluation

Author

Listed:
  • Jean-Michel Josselin

    (University of Rennes 1)

  • Benoît Le Maux

    (University of Rennes 1)

Abstract

One goal of statistical studies is to highlight associations between pairs of variables. This is particularly useful when one wants to get a clear picture of a multi-dimensional data set and motivate a specific policy intervention (Sect. 4.1). Yet, the choice of a method is not straightforward. Testing for correlation is the relevant approach to investigate a linear association between two numerical variables (Sect. 4.2). The chi-square test is an inferential test that uses data from a sample to make conclusions about the relationship between two categorical variables (Sect. 4.3). When one variable is numerical and the other is categorical, the usual approach is to test for differences between means or to implement an analysis of variance (Sect. 4.4). When faced with more than two variables, it is also possible to provide a multidimensional representation of the problem using methods such as principal component analysis (Sect. 4.5) and multiple correspondence analysis (Sect. 4.6). The idea is to reduce the dimensionality of a data set by plotting all the observations on 2D graphs describing how observations cluster with respect to various characteristics. These groups can for instance serve to identify the beneficiaries of a particular intervention. Using R-CRAN, several examples are included in this chapter to illustrate the different methods.

Suggested Citation

  • Jean-Michel Josselin & Benoît Le Maux, 2017. "Measuring and Visualizing Associations," Springer Books, in: Statistical Tools for Program Evaluation, chapter 4, pages 89-135, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-52827-4_4
    DOI: 10.1007/978-3-319-52827-4_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-52827-4_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.