IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-15696-5_7.html
   My bibliography  Save this book chapter

Deployment of a Descriptive Big Data Model

In: Business Intelligence for New-Generation Managers

Author

Listed:
  • Marco Pospiech

    (Technische Universität Bergakademie)

  • Carsten Felden

    (Technische Universität Bergakademie)

Abstract

Big Data is an emerging research topic. The term remains fuzzy and jeopardizes to become an umbrella term. Straight forward investigations are inhibited since the research field is not well defined, yet. To identify a common understanding, experts have been interviewed. Hereby, the findings are coded and conceptualized until a descriptive Big Data model is developed by using Grounded Theory. This provides the basis for the model’s deployment. Here, academic publications and practical implementations marked as Big Data are classified. It becomes evident that Big Data is use-case driven and forms an interdisciplinary research field. Even not all papers belong to this research field. The findings become confirmed by the practical implementations. The chapter contributes to the intensive discussion about the term Big Data in illustrating the underlying area of discourse. A classification to set the research area apart from others can be achieved to support a goal oriented research in future.

Suggested Citation

  • Marco Pospiech & Carsten Felden, 2015. "Deployment of a Descriptive Big Data Model," Springer Books, in: Jörg H. Mayer & Reiner Quick (ed.), Business Intelligence for New-Generation Managers, edition 127, pages 77-95, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-15696-5_7
    DOI: 10.1007/978-3-319-15696-5_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-15696-5_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.