IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-25456-7_10.html
   My bibliography  Save this book chapter

Applying reinforcement learning to estimating apartment reference rents

In: Artificial Intelligence and Machine Learning in the Travel Industry

Author

Listed:
  • Jian Wang

    (4550 North Point Parkway, Suite 410)

  • Murtaza Das

    (4550 North Point Parkway, Suite 410)

  • Stephen Tappert

    (4550 North Point Parkway, Suite 410)

Abstract

In apartment revenue management, rental rates for new and renewal leases are often optimized around a reference rent, which is defined as the “economic value” of an apartment unit. In practice, reference rents are usually estimated using some rules-based approaches. These rules are mostly intuitive to understand and easy to implement, but they suffer from the problems of being subjective, static, and lacking self-learning capability. In this study, we propose a reinforcement learning (RL) approach to estimating reference rents. Our intent is to find the optimal reference rent estimates via maximizing the average of RevPAUs over an infinite time horizon, where RevPAU (Revenue per Available Unit) is one of leading indicators that many apartments adapt. The proposed RL model is trained and tested against real-world datasets of reference rents that are estimated with the use of one rules-based approach by two leading apartment management companies. Empirical results show that this RL-based approach outperforms the rules-based approach with a 19% increase in RevPAU on average.

Suggested Citation

  • Jian Wang & Murtaza Das & Stephen Tappert, 2023. "Applying reinforcement learning to estimating apartment reference rents," Springer Books, in: Ben Vinod (ed.), Artificial Intelligence and Machine Learning in the Travel Industry, pages 123-136, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-25456-7_10
    DOI: 10.1007/978-3-031-25456-7_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-25456-7_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.