IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-031-19884-7_74.html
   My bibliography  Save this book chapter

Big Data Applications in Supply Chain Management

In: The Palgrave Handbook of Supply Chain Management

Author

Listed:
  • Emel Aktas

    (Cranfield University)

Abstract

This chapter overviews emerging applications of big data analytics in supply chain management. The academic attention on big data applications and their practitioner uptake is growing. Many recent papers showcase descriptive, predictive, and prescriptive analytics applications where multiple benefits emerge from applying big data analytics to managerial problems. Such benefits include cost reduction, increases in revenues and profits, and minimization of the environmental impact of operations. Current concerns include the transition from traditional to digital supply chains and what can realistically be achieved over the next two decades. While we evidence excellent applications of big data analytics for supply chain planning and management problems, the issue of working in silos persists. For an organization to fully exploit big data applications, data should be perceived as an asset. When deploying novel artificial intelligence algorithms, the explainability of these algorithms should be at the forefront of an implementation strategy. Future research directions should be aimed at devising a connected and coordinated analytics approach that will enable the benefits of big data applications to go beyond what is currently realized.

Suggested Citation

  • Emel Aktas, 2024. "Big Data Applications in Supply Chain Management," Springer Books, in: Joseph Sarkis (ed.), The Palgrave Handbook of Supply Chain Management, pages 1301-1325, Springer.
  • Handle: RePEc:spr:sprchp:978-3-031-19884-7_74
    DOI: 10.1007/978-3-031-19884-7_74
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-031-19884-7_74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.