IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-96935-6_17.html
   My bibliography  Save this book chapter

Input Uncertainty in Stochastic Simulation

In: The Palgrave Handbook of Operations Research

Author

Listed:
  • Russell R. Barton

    (Penn State University)

  • Henry Lam

    (Columbia University)

  • Eunhye Song

    (Penn State University)

Abstract

Stochastic simulation requires input probability distributions to model systems with random dynamic behavior. Given the input distributions, random behavior is simulated using Monte Carlo techniques. This randomness means that statistical characterizations of system behavior based on finite-length simulation runs have Monte Carlo error. Simulation output analysis and optimization methods that account for Monte Carlo error have been in place for many years. But there is a second source of uncertainty in characterizing system behavior that results from error in estimating the input probability distributions. When the input distributions represent real-world phenomena but are determined based on finite samples of real-world data, sampling error gives imperfect characterization of these distributions. This estimation error propagates to simulated system behavior causing what we call input uncertainty. This chapter summarizes the relatively recent development of methods for simulation output analysis and optimization that take both input uncertainty and Monte Carlo error into account.

Suggested Citation

  • Russell R. Barton & Henry Lam & Eunhye Song, 2022. "Input Uncertainty in Stochastic Simulation," Springer Books, in: Saïd Salhi & John Boylan (ed.), The Palgrave Handbook of Operations Research, chapter 0, pages 573-620, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-96935-6_17
    DOI: 10.1007/978-3-030-96935-6_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-96935-6_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.