IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-94683-8_15.html
   My bibliography  Save this book chapter

Multi-objective Robust Optimization for the Design of Biomass Co-firing Networks

In: Intelligent Engineering and Management for Industry 4.0

Author

Listed:
  • Jayne Lois G. San Juan

    (De La Salle University)

  • Charlle L. Sy

    (De La Salle University)

Abstract

Biomass co-firing in coal power plants is an immediate and practical approach to reduce coal usage and pollutant emissions because only minor modifications are required. With direct co-firing, biomass can be used directly as secondary fuel in power plants to partially displace coal. Although it requires minimal investments, it can lead to equipment corrosion from unconventional fuel properties of the biomass–coal blend. With indirect co-firing, the risk of damage is minimized by separately processing biomass. The solid biochar by-product can be used as soil fertilizer to achieve further reductions in GHG emissions through carbon sequestration. However, as this calls for a separate biomass energy conversion plant, its investment cost is higher. Moreover, this system faces uncertainties from the inherent variability in biomass quality. This must be accounted for because mixing fuels results in the blending of their properties. In this work, a robust optimization model is proposed to design cost and environmentally effective biomass co-firing networks that decides on appropriate co-firing configurations and fuel blends. A case study is solved to demonstrate validity. Results of Monte Carlo simulation show that the robust optimal network configuration is relatively immune to uncertainty realizations as compared with the optimum identified with deterministic models.

Suggested Citation

  • Jayne Lois G. San Juan & Charlle L. Sy, 2022. "Multi-objective Robust Optimization for the Design of Biomass Co-firing Networks," Springer Books, in: Yong-Hong Kuo & Yelin Fu & Peng-Chu Chen & Calvin Ka-lun Or & George G. Huang & Junwei Wang (ed.), Intelligent Engineering and Management for Industry 4.0, pages 159-168, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-94683-8_15
    DOI: 10.1007/978-3-030-94683-8_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-94683-8_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.