IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-88662-2_2.html
   My bibliography  Save this book chapter

Explorable Uncertainty Meets Decision-Making in Logistics

In: Dynamics in Logistics

Author

Listed:
  • Nicole Megow

    (University of Bremen)

  • Jens Schlöter

    (University of Bremen)

Abstract

Decision-making under uncertainty is a major challenge in logistics. Mathematical optimization has a long tradition in providing powerful methods for solving logistics problems. While classical optimization models for uncertainty in the input data do not consider the option to actively query the precise value of uncertain input elements, this option is in practice often available at a certain cost. The recent line of research on optimization under explorable uncertainty develops methods with provable performance guarantees for such scenarios. In this chapter, we highlight some recent results from the mathematical optimization perspective and outline the potential power of such model and techniques for solving logistics problems.

Suggested Citation

  • Nicole Megow & Jens Schlöter, 2021. "Explorable Uncertainty Meets Decision-Making in Logistics," Springer Books, in: Michael Freitag & Herbert Kotzab & Nicole Megow (ed.), Dynamics in Logistics, pages 35-56, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-88662-2_2
    DOI: 10.1007/978-3-030-88662-2_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-88662-2_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.