IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-50958-3_6.html
   My bibliography  Save this book chapter

Random Forest Regression Model Application for Prediction of China’s Railway Freight Volume

In: Collaborative Logistics and Intermodality

Author

Listed:
  • Yang Wang

    (Beijing Jiaotong University)

  • Xiaochun Lu

    (Beijing Jiaotong University)

Abstract

Purpose: The China Railway has an important impact on the transport of domestic energy products. The Chinese Prime Minister sees railway freight as a barometer of the Chinese economy; therefore, the study of China’s Railway freight is meaningful. During the past 5 years, from 2012 to 2016, China Railway freight volume continually declined, leading to a very serious situation. It is important to predict the volume of rail freight because it indicates the development of the Chinese economy. The prediction of China’s railway freight by a traditional regression model is not very effective because it is too sensitive to changes in statistical data. In particular, economic changes in China are now too large, resulting in significant changes in railway freight volume. In this chapter, we aim to use an machine learning model to predict China’s railway freight volume and attempt to determine whether the random forest regression model is more effective than the conventional forecasting method. Design/methodology/approach: In this chapter, random forest regression is applied to quantitatively predict railway freight volume. Six independent variables were collected from Jan 2001 to Dec 2016 in relation to China’s railway freight. After data analysis, a random forest regression model of China’s railway freight volume was built using the R language. To obtain the most suitable regression model, the random forest regression error is contrasted with the multiple linear regression model. The result shows that random forest regression model performed better than linear regression. Findings: The results in this study indicate the following: (1) the random forest regression model is able to predict railway freight volume using the selected variables. (2) By comparison of the variance and the normalized mean square error (NMSE) of different models, the best random forest regression model is obtained, and this model performs accurate prediction. (3) Compared with the multiple linear regression model, the random forest regression model exhibits superiority in prediction accuracy, robustness and fitness. (4) Although coal makes up the largest proportion of railway freight, refined oil production also has a large impact.

Suggested Citation

  • Yang Wang & Xiaochun Lu, 2021. "Random Forest Regression Model Application for Prediction of China’s Railway Freight Volume," Springer Books, in: Jorge E. Hernández & Dong Li & José Elias Jimenez-Sanchez & Miguel Gaston Cedillo-Campos & Luo Wenpi (ed.), Collaborative Logistics and Intermodality, pages 91-120, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-50958-3_6
    DOI: 10.1007/978-3-030-50958-3_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-50958-3_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.