IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-030-48652-5_33.html
   My bibliography  Save this book chapter

Network Science and e-Tourism

In: Handbook of e-Tourism

Author

Listed:
  • Julia Neidhardt

    (TU Wien)

Abstract

This chapter provides an introduction to network science and its applications within e-tourism research. In the first part, an overview of network science as a continuously growing scientific field is given. Network science provides various concepts and methods for the analysis of the structure and dynamics of all kinds of networks such as social networks, information networks, and economic networks. Afterward, popular software and tools to model, analyze, and visualize network data are briefly discussed. In the third part, an overview of research in e-tourism that utilized network science methods is provided. In existing studies, different types of networks were constructed and analyzed, in particular networks of travelers, networks of tourism websites, networks capturing behavioral patterns of travelers, or text networks of travel-related posts. Furthermore, it is briefly discussed, which data sources are typically used in the literature. Finally, the main points are summarized and conclusions are drawn.

Suggested Citation

  • Julia Neidhardt, 2022. "Network Science and e-Tourism," Springer Books, in: Zheng Xiang & Matthias Fuchs & Ulrike Gretzel & Wolfram Höpken (ed.), Handbook of e-Tourism, chapter 24, pages 583-594, Springer.
  • Handle: RePEc:spr:sprchp:978-3-030-48652-5_33
    DOI: 10.1007/978-3-030-48652-5_33
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-030-48652-5_33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.