IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4419-0820-9_27.html
   My bibliography  Save this book chapter

A Common Modeling Framework for Dynamic Traffic Assignment and Supply Chain Management Systems with Congestion Phenomena

In: Transportation and Traffic Theory 2009: Golden Jubilee

Author

Listed:
  • Georgios Kalafatas

    (Purdue University)

  • Srinivas Peeta

    (Purdue University)

Abstract

This paper seeks to illustrate the ability of the graph theoretic cell transmission model (GT-CTM), previously developed by the authors, to address some dynamic supply chain management (SCM) problems with congestion phenomena using a simple graphical representation. It further shows the conceptual equivalence between SCM and dynamic traffic assignment (DTA) problems using the GT-CTM framework. Thereby, the GT-CTM provides a generalized modeling framework to address dynamic network problems with congestion phenomena

Suggested Citation

  • Georgios Kalafatas & Srinivas Peeta, 2009. "A Common Modeling Framework for Dynamic Traffic Assignment and Supply Chain Management Systems with Congestion Phenomena," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 541-557, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4419-0820-9_27
    DOI: 10.1007/978-1-4419-0820-9_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    2. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2020. "Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 199-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-0820-9_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.