IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-24243-9_4.html
   My bibliography  Save this book chapter

Internet Congestion: A Laboratory Experiment

In: Experimental Business Research

Author

Listed:
  • Daniel Friedman

    (University of California)

  • Bernardo Huberman

    (Hewlett-Packard Laboratories)

Abstract

Human players and automated players (bots) interact in real time in a congested network. A player’s revenue is proportional to the number of successful “downloads” and his cost is proportional to his total waiting time. Congestion arises because waiting time is an increasing random function of the number of uncompleted download attempts by all players. Surprisingly, some human players earn considerably higher profits than bots. Bots are better able to exploit periods of excess capacity, but they create endogenous trends in congestion that human players are better able to exploit. Nash equilibrium does a good job of predicting the impact of network capacity and noise amplitude. Overall efficiency is quite low, however, and players overdissipate potential rents, i.e., earn lower profits than in Nash equilibrium.

Suggested Citation

  • Daniel Friedman & Bernardo Huberman, 2005. "Internet Congestion: A Laboratory Experiment," Springer Books, in: Amnon Rapoport & Rami Zwick (ed.), Experimental Business Research, chapter 0, pages 83-102, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-24243-9_4
    DOI: 10.1007/0-387-24243-0_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. March, Christoph, 2021. "Strategic interactions between humans and artificial intelligence: Lessons from experiments with computer players," Journal of Economic Psychology, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-24243-9_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.