IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-94830-0_7.html
   My bibliography  Save this book chapter

Conditional Markov Chain Search for the Simple Plant Location Problem Improves Upper Bounds on Twelve Körkel–Ghosh Instances

In: Optimization Problems in Graph Theory

Author

Listed:
  • Daniel Karapetyan

    (University of Essex)

  • Boris Goldengorin

    (University of Baltimore)

Abstract

We address a family of hard benchmark instances for the Simple Plant Location Problem (also known as the Uncapacitated Facility Location Problem). The recent attempt by Fischetti et al. Manag Sci 63(7): 2146–2162 (2017) to tackle the Körkel–Ghosh instances resulted in seven new optimal solutions and 22 improved upper bounds. We use automated generation of heuristics to obtain a new algorithm for the Simple Plant Location Problem. In our experiments, our new algorithm matched all the previous best known and optimal solutions, and further improved 12 upper bounds, all within shorter time budgets compared to the previous efforts. Our algorithm design process is split into two phases: (1) development of algorithmic components such as local search procedures and mutation operators, and (2) composition of a metaheuristic from the available components. Phase (1) requires human expertise and often can be completed by implementing several simple domain-specific routines known from the literature. Phase (2) is entirely automated by employing the Conditional Markov Chain Search (CMCS) framework. In CMCS, a metaheuristic is flexibly defined by a set of parameters, called configuration. Then the process of composition of a metaheuristic from the algorithmic components is reduced to an optimisation problem seeking the best performing CMCS configuration. We discuss the problem of comparing configurations, and propose a new efficient technique to select the best performing configuration from a large set. To employ this method, we restrict the original CMCS to a simple deterministic case that leaves us with a finite and manageable number of meaningful configurations.

Suggested Citation

  • Daniel Karapetyan & Boris Goldengorin, 2018. "Conditional Markov Chain Search for the Simple Plant Location Problem Improves Upper Bounds on Twelve Körkel–Ghosh Instances," Springer Optimization and Its Applications, in: Boris Goldengorin (ed.), Optimization Problems in Graph Theory, pages 123-147, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-94830-0_7
    DOI: 10.1007/978-3-319-94830-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-94830-0_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.