IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-94830-0_10.html
   My bibliography  Save this book chapter

Optimal Patrol on a Graph Against Random and Strategic Attackers

In: Optimization Problems in Graph Theory

Author

Listed:
  • Richard G. McGrath

    (United States Naval Academy)

Abstract

We present a patrol problem where several patrollers move between locations dispersed throughout an area of interest in order to detect enemy attacks. To formulate an effective patrol policy, the patrollers must take into account travel time between locations, as well as location-specific parameters, which include patroller inspection times, enemy attack times, and cost incurred due to an undetected attack. We consider both random and strategic attackers. A random attacker chooses a location to attack according to a probability distribution, while a strategic attacker plays a two-person zero-sum game with the patrollers. We model the area of interest on a graph and, in some cases, can compute an optimal patrol solution using linear programming. This method, however, becomes computationally intractable as the problem size grows. Therefore, we present efficient heuristics, based on aggregate index values, fictitious play, and shortest paths. Numerical experiments using the heuristic methods produce excellent results on several graph sizes and structures, with computation time orders of magnitude less than what is required to compute an optimal solution.

Suggested Citation

  • Richard G. McGrath, 2018. "Optimal Patrol on a Graph Against Random and Strategic Attackers," Springer Optimization and Its Applications, in: Boris Goldengorin (ed.), Optimization Problems in Graph Theory, pages 215-263, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-94830-0_10
    DOI: 10.1007/978-3-319-94830-0_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-94830-0_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.