IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-91578-4_7.html
   My bibliography  Save this book chapter

Optimization in Relative Scale

In: Lectures on Convex Optimization

Author

Listed:
  • Yurii Nesterov

    (Catholic University of Louvain)

Abstract

In many applications, it is difficult to relate the number of iterations in an optimization scheme with the desired accuracy of the solution since the corresponding inequality contains unknown parameters (Lipschitz constant, distance to the optimum). However, in many cases the required level of relative accuracy is quite understandable. To develop methods which compute solutions with relative accuracy, we need to employ internal structure of the problem. In this chapter, we start from problems of minimizing homogeneous objective functions over a convex set separated from the origin. The availability of the subdifferential of this function at zero provides us with a good metric, which can be used in optimization schemes and in the smoothing technique. If this subdifferential is polyhedral, then the metric can be computed by a cheap preliminary rounding process. We also present a barrier subgradient method, which computes an approximate maximum of a positive convex function with certain relative accuracy. We show how to apply this method to solve problems of fractional covering, maximal concurrent flow, semidefinite relaxation, online optimization, portfolio management, and others. Finally, we consider a class of strictly positive functions, for which a kind of quasi-Newton method is developed.

Suggested Citation

  • Yurii Nesterov, 2018. "Optimization in Relative Scale," Springer Optimization and Its Applications, in: Lectures on Convex Optimization, edition 2, chapter 0, pages 489-570, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-91578-4_7
    DOI: 10.1007/978-3-319-91578-4_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-91578-4_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.