IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-77586-9_1.html
   My bibliography  Save this book chapter

Introduction

In: Practical Mathematical Optimization

Author

Listed:
  • Jan A. Snyman

    (University of Pretoria)

  • Daniel N. Wilke

    (University of Pretoria)

Abstract

Mathematical optimization definition Formally, Mathematical Optimization is the process of (i) the formulation and (ii) the solution of a constrained optimization problem of the general mathematical form: $$\begin{aligned} \mathop {{{\mathrm{minimize\, }}}}_{\mathrm{w.r.t.\ }{} \mathbf{x}}f(\mathbf{x}),\ \mathbf{x}=[x_1,x_2,\dots , x_n]^T\in {\mathbb R}^n \end{aligned}$$ subject to the constraints: $$\begin{aligned} \begin{array}{ll} g_j(\mathbf{x})\le 0,&{}j=1,\ 2,\ \dots ,\ m\\ h_j(\mathbf{x})=0,&{}j=1,\ 2,\ \dots ,\ r \end{array} \end{aligned}$$ where $$f(\mathbf{x})$$ , $$g_j(\mathbf{x})$$ and $$h_j(\mathbf{x})$$ are scalar functions of the real column vector $$\mathbf{x}$$ . Mathematical Optimization is often also called Nonlinear Programming, Mathematical Programming or Numerical Optimization. In more general terms Mathematical Optimization may be described as the science of determining the best solutions to mathematically defined problems, which may be models of physical reality or of manufacturing and management systems. The emphasis of this book is almost exclusively on gradient-based methods. This is for two reasons. (i) The authors believe that the introduction to the topic of mathematical optimization is best done via the classical gradient-based approach and (ii), contrary to the current popular trend of using non-gradient methods, such as genetic algorithms GA’s, simulated annealing, particle swarm optimization and other evolutionary methods, the authors are of the opinion that these search methods are, in many cases, computationally too expensive to be viable. The argument that the presence of numerical noise and multiple minima disqualify the use of gradient-based methods, and that the only way out in such cases is the use of the above mentioned non-gradient search techniques, is not necessarily true as outlined in Chapters 6 and 8.

Suggested Citation

  • Jan A. Snyman & Daniel N. Wilke, 2018. "Introduction," Springer Optimization and Its Applications, in: Practical Mathematical Optimization, edition 2, chapter 0, pages 3-40, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-77586-9_1
    DOI: 10.1007/978-3-319-77586-9_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-77586-9_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.