IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-74325-7_5.html
   My bibliography  Save this book chapter

A Computational Intelligence System Identifying Cyber-Attacks on Smart Energy Grids

In: Modern Discrete Mathematics and Analysis

Author

Listed:
  • Konstantinos Demertzis

    (Democritus University of Thrace)

  • Lazaros Iliadis

    (Democritus University of Thrace)

Abstract

According to the latest projections of the International Energy Agency, smart grid technologies have become essential to handling the radical changes expected in international energy portfolios through 2030. A smart grid is an energy transmission and distribution network enhanced through digital control, monitoring, and telecommunication capabilities. It provides a real-time, two-way flow of energy and information to all stakeholders in the electricity chain, from the generation plant to the commercial, industrial, and residential end user. New digital equipment and devices can be strategically deployed to complement existing equipment. Using a combination of centralized IT and distributed intelligence within critical system control nodes ranging from thermal and renewable plant controls to grid and distribution utility servers to cities, commercial and industrial infrastructures, and homes a smart grid can bring unprecedented efficiency and stability to the energy system. Information and communication infrastructures will play an important role in connecting and optimizing the available grid layers. Grid operation depends on control systems called Supervisory Control and Data Acquisition (SCADA) that monitor and control the physical infrastructure. At the heart of these SCADA systems are specialized computers known as Programmable Logic Controllers (PLCs). There are destructive cyber-attacks against SCADA systems as Advanced Persistent Threats (APT) were able to take over the PLCs controlling the centrifuges, reprogramming them in order to speed up the centrifuges, leading to the destruction of many and yet displaying a normal operating speed in order to trick the centrifuge operators and finally can not only shut things down but can alter their function and permanently damage industrial equipment. This paper proposes a computational intelligence System for Identification Cyber-Attacks on the Smart Energy Grids (SICASEG). It is a big data forensics tool which can capture, record, and analyze the smart energy grid network events to find the source of an attack to both prevent future attacks and perhaps for prosecution.

Suggested Citation

  • Konstantinos Demertzis & Lazaros Iliadis, 2018. "A Computational Intelligence System Identifying Cyber-Attacks on Smart Energy Grids," Springer Optimization and Its Applications, in: Nicholas J. Daras & Themistocles M. Rassias (ed.), Modern Discrete Mathematics and Analysis, pages 97-116, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-74325-7_5
    DOI: 10.1007/978-3-319-74325-7_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Demertzis & Dimitrios Taketzis & Vasiliki Demertzi & Charalabos Skianis, 2022. "An Ensemble Transfer Learning Spiking Immune System for Adaptive Smart Grid Protection," Energies, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-74325-7_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.