IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-74325-7_16.html
   My bibliography  Save this book chapter

Fuzzy Empiristic Implication, A New Approach

In: Modern Discrete Mathematics and Analysis

Author

Listed:
  • Konstantinos Mattas

    (Department of Civil Engineering)

  • Basil K. Papadopoulos

    (Department of Civil Engineering)

Abstract

The present paper is a brief introduction to logical fuzzy implication operators, the basic properties of a fuzzy implication function, and ways to construct new fuzzy implication functions. It is also argued that logical implication functions are defined in a rather rationalistic manner. Thus a new, empiristic approach is proposed, defining implication relations that are derived from data observation and with no regard to any preexisting constrains. A number of axioms are introduced to define a fuzzy empiristic implication relation, and a method of computing such a relation is proposed. It is argued that the proposed method is easy and with small time requirement even for very large data sets. Finally an application of the empiristic fuzzy implication relation is presented, the choice of a suitable logical fuzzy implication function to describe an “If…then…” fuzzy rule, when observed data exists. An empiristic fuzzy implication relation is computed according to the data, and through schemas of approximate reasoning, the difference of it to any logical fuzzy implication function is measured. The fuzzy implication function that is closer to the empiristic best resembles the observed “If…then…” fuzzy rule.

Suggested Citation

  • Konstantinos Mattas & Basil K. Papadopoulos, 2018. "Fuzzy Empiristic Implication, A New Approach," Springer Optimization and Its Applications, in: Nicholas J. Daras & Themistocles M. Rassias (ed.), Modern Discrete Mathematics and Analysis, pages 317-331, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-74325-7_16
    DOI: 10.1007/978-3-319-74325-7_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Fuzzy implication; Approximate reasoning;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-74325-7_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.