IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-68640-0_6.html
   My bibliography  Save this book chapter

A Model for Optimal Reinforcement of Error- and Attack-Resilient Clusters in Networks Under Uncertainty

In: Optimization Methods and Applications

Author

Listed:
  • Hossein Dashti

    (University of Arizona)

  • Pavlo A. Krokhmal

    (University of Arizona)

Abstract

Network robustness issues are crucial in a variety of application areas, such as energy, defense, communications, and so on. Unpredictable failures of network components (nodes and/or edges) can be caused by a variety of factors, including man-made and natural disruptions, which may significantly affect or inhibit network’s functionality. In many situations, one of the key robustness requirements is that every pair of nodes is connected, with the number of intermediate links between them being as small as possible. Additionally, if nodes in a cluster are connected by several different paths, such a cluster will be more robust with respect to potential network component disruptions. In this work, we study the problem of identifying error- and attack-resilient clusters in graphs, particularly power grids. It is assumed that the cluster represents a R-robust 2-club, which is defined as a subgraph with at least R node/edge disjoint paths connecting each pair of nodes, where each path consists of at most two edges. Uncertain information manifests itself in the form of stochastic number of errors/attacks that could happen in different nodes. If one can reinforce the network components against future threats, the goal is to determine optimal reinforcements that would yield a cluster with minimum risk of disruptions. A combinatorial branch-and-bound algorithm is developed and compared with an equivalent mathematical programming approach on simulated and real-world networks.

Suggested Citation

  • Hossein Dashti & Pavlo A. Krokhmal, 2017. "A Model for Optimal Reinforcement of Error- and Attack-Resilient Clusters in Networks Under Uncertainty," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 97-117, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-68640-0_6
    DOI: 10.1007/978-3-319-68640-0_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-68640-0_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.