IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-68640-0_27.html
   My bibliography  Save this book chapter

Convex Extensions in Combinatorial Optimization and Their Applications

In: Optimization Methods and Applications

Author

Listed:
  • Sergey Yakovlev

    (National Aerospace University “Kharkiv Aviation Institute”)

Abstract

This research focuses on problems of combinatorial optimization necessary for mapping combinatorial sets into arithmetic Euclidean space. The analysis shows that there is a class of vertex-located sets that coincide with the set of vertices within their convex hull. The author has proved the theorems on the existence of convex, strongly convex, and differentiable extensions for functions defined on vertex-located sets. An equivalent problem of mathematical programming with convex objective function and functional constraints has been formulated. The author has studied the properties of convex function extremes on vertex-located sets. The research contains the examples of vertex-located combinatorial sets and algorithms for constructing convex, strongly convex, and differentiable extensions for functions defined on these sets. The conditions have been formulated that are sufficient for a minimum value of functions, as well as lower bounds of functions have been defined on the permutation set. The results obtained can be well used for developing new methods of combinatorial optimization.

Suggested Citation

  • Sergey Yakovlev, 2017. "Convex Extensions in Combinatorial Optimization and Their Applications," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 567-584, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-68640-0_27
    DOI: 10.1007/978-3-319-68640-0_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-68640-0_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.