IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-58821-6_9.html
   My bibliography  Save this book chapter

Generalized Disjunctive Programming

In: Pyomo — Optimization Modeling in Python

Author

Listed:
  • William E. Hart

    (Sandia National Laboratories)

  • Carl D. Laird

    (Sandia National Laboratories)

  • Jean-Paul Watson

    (Sandia National Laboratories)

  • David L. Woodruff

    (University of California, Davis)

  • Gabriel A. Hackebeil

    (University of Michigan)

  • Bethany L. Nicholson

    (Sandia National Laboratories)

  • John D. Siirola

    (Sandia National Laboratories)

Abstract

This chapter documents how to express and solve Generalized Disjunctive Programs (GDPs). GDP models provide a structured approach for describing logical relationships in optimization models.We show how Pyomo blocks provide a natural base for representing disjuncts and forming disjunctions, and we how to solve GDP models through the use of automated problem transformations.

Suggested Citation

  • William E. Hart & Carl D. Laird & Jean-Paul Watson & David L. Woodruff & Gabriel A. Hackebeil & Bethany L. Nicholson & John D. Siirola, 2017. "Generalized Disjunctive Programming," Springer Optimization and Its Applications, in: Pyomo — Optimization Modeling in Python, edition 2, chapter 0, pages 157-164, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-58821-6_9
    DOI: 10.1007/978-3-319-58821-6_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-58821-6_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.