IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-58356-3_7.html
   My bibliography  Save this book chapter

Penalty and Augmented Lagrangian Methods

In: Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Author

Listed:
  • Neculai Andrei

    (Center for Advanced Modeling & Optimization
    Academy of Romanian Scientists)

Abstract

This chapter introduces two very important concepts in constrained nonlinear optimization. These are penalty and augmented Lagrangian concepts. The idea is that both these concepts replace the original problem by a sequence of sub-problems in which the constraints are expressed by terms added to the objective function. The penalty concept is implemented in two different methods. The quadratic penalty method adds to the objective function a multiple of the square of the violation of each constraint and solves a sequence of unconstrained optimization sub-problems. Simple and enough intuitive, this approach has some important deficiencies. The nonsmooth exact penalty method, on the other hand, solves a single unconstrained optimization problem. In this approach, a popular function is the l 1 penalty function. The problem with this method is that the nonsmoothness may create complications in numerical implementations. Finally, the second concept is the multiplier method or the augmented Lagrangian method, which explicitly uses Lagrange multiplier estimates in order to avoid the ill-conditioning of the quadratic penalty method.

Suggested Citation

  • Neculai Andrei, 2017. "Penalty and Augmented Lagrangian Methods," Springer Optimization and Its Applications, in: Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology, chapter 0, pages 185-201, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-58356-3_7
    DOI: 10.1007/978-3-319-58356-3_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-58356-3_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.