IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-58356-3_19.html
   My bibliography  Save this book chapter

Interior Point Sequential Linear-Quadratic Programming: KNITRO/INTERIOR

In: Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Author

Listed:
  • Neculai Andrei

    (Center for Advanced Modeling & Optimization
    Academy of Romanian Scientists)

Abstract

In Chapter 14 the KNITRO/ACTIVE algorithm based on the active-set sequential programming method has been presented. In this chapter the KNITRO/INTERIOR algorithm is being described, together with its numerical performances for solving large-scale general continuously nonlinear optimization problems. KNITRO/INTERIOR provides two procedures for computing the steps within the interior point approach. In the version INTERIOR-CG, each step is computed using a projected conjugate gradient iteration. It factors a projection matrix and uses the conjugate gradient method to approximately minimize a quadratic model of the barrier problem. In the version INTERIOR-DIRECT, the algorithm attempts to compute a new iterate by solving the primal-dual KKT system using direct linear algebra. In case this step cannot be guaranteed to be of good quality or if a negative curvature is detected, then the new iterate is computed by the INTERIOR-CG algorithm. The description of the KNITRO/INTERIOR-CG algorithm is given by Byrd et al. (1999), and its global convergence theory is presented by Byrd et al. (2000). The method implemented in the KNITRO/INTERIOR-DIRECT algorithm is described by Waltz et al. (2003).

Suggested Citation

  • Neculai Andrei, 2017. "Interior Point Sequential Linear-Quadratic Programming: KNITRO/INTERIOR," Springer Optimization and Its Applications, in: Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology, chapter 0, pages 397-413, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-58356-3_19
    DOI: 10.1007/978-3-319-58356-3_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-58356-3_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.