IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-51500-7_18.html
   My bibliography  Save this book chapter

New Two-Slope Parameterized Achievement Scalarizing Functions for Nonlinear Multiobjective Optimization

In: Operations Research, Engineering, and Cyber Security

Author

Listed:
  • Outi Wilppu

    (University of Turku)

  • Marko M. Mäkelä

    (University of Turku)

  • Yury Nikulin

    (University of Turku)

Abstract

Most of the methods for multiobjective optimization utilize some scalarization technique where several goals of the original multiobjective problem are converted into a single-objective problem. One common scalarization technique is to use the achievement scalarizing functions. In this paper, we introduce a new family of two-slope parameterized achievement scalarizing functions for multiobjective optimization. This family generalizes both parametrized ASF and two-slope ASF. With these two-slope parameterized ASF, we can guarantee (weak) Pareto optimality of the solutions produced, and every (weakly) Pareto optimal solution can be obtained. The parameterization of this kind gives a systematic way to produce different solutions from the same preference information. With two weighting vectors depending on the achievability of the reference point, there is no need for any assumptions about the reference point. In addition to theory, we give graphical illustrations of two-slope parameterized ASF and analyze sparsity of the solutions produced in convex and nonconvex testproblems.

Suggested Citation

  • Outi Wilppu & Marko M. Mäkelä & Yury Nikulin, 2017. "New Two-Slope Parameterized Achievement Scalarizing Functions for Nonlinear Multiobjective Optimization," Springer Optimization and Its Applications, in: Nicholas J. Daras & Themistocles M. Rassias (ed.), Operations Research, Engineering, and Cyber Security, pages 403-422, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-51500-7_18
    DOI: 10.1007/978-3-319-51500-7_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Outi Montonen & Ville-Pekka Eronen & Timo Ranta & Jani A. S. Huttunen & Marko M. Mäkelä, 2020. "Multiobjective Mixed Integer Nonlinear Model to Plan the Schedule for the Final Disposal of the Spent Nuclear Fuel in Finland," Mathematics, MDPI, vol. 8(4), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-51500-7_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.