IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-42056-1_3.html
   My bibliography  Save this book chapter

Optimization of Portfolio Compositions for Small and Medium Price-Taking Traders

In: Optimization and Its Applications in Control and Data Sciences

Author

Listed:
  • Alexander S. Belenky

    (National Research University Higher School of Economics
    Massachusetts Institute of Technology)

  • Lyudmila G. Egorova

    (National Research University Higher School of Economics)

Abstract

The paper proposes two new approaches to designing efficient mathematical tools for quantitatively analyzing decision-making processes that small and medium price-taking traders undergo in forming and managing their portfolios of financial instruments traded in a stock exchange. Two mathematical models underlying these approaches are considered. If the trader can treat price changes for each financial instrument of her interest as those of a random variable with a known (for instance, a uniform) probability distribution, one of these models allows the trader to formulate the problem of finding an optimal composition of her portfolio as an integer programming problem. The other model is suggested to use when the trader does not possess any particular information on the probability distribution of the above-mentioned random variable for financial instruments of her interest while being capable of estimating the areas to which the prices of groups of financial instruments (being components of finite-dimensional vectors for each group) are likely to belong. When each such area is a convex polyhedron described by a finite set of compatible linear equations and inequalities of a balance kind, the use of this model allows one to view the trader’s decision on her portfolio composition as that of a player in an antagonistic game on sets of disjoint player strategies. The payoff function of this game is a sum of a linear and a bilinear function of two vector arguments, and the trader’s guaranteed financial result in playing against the stock exchange equals the exact value of the maximin of this function. This value, along with the vectors at which it is attained, can be found by solving a mixed programming problem. Finding an upper bound for this maximin value (and the vectors at which this upper bound is attained) is reducible to finding saddle points in an auxiliary antagonistic game with the same payoff function on convex polyhedra of disjoint player strategies. These saddle points can be calculated by solving linear programming problems forming a dual pair.

Suggested Citation

  • Alexander S. Belenky & Lyudmila G. Egorova, 2016. "Optimization of Portfolio Compositions for Small and Medium Price-Taking Traders," Springer Optimization and Its Applications, in: Boris Goldengorin (ed.), Optimization and Its Applications in Control and Data Sciences, pages 51-117, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-42056-1_3
    DOI: 10.1007/978-3-319-42056-1_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Belenky & L. Egorova, 2016. "Two approaches to modeling the interaction of small and medium price-taking traders with a stock exchange by mathematical programming techniques," Papers 1610.05703, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-42056-1_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.