IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-42056-1_14.html
   My bibliography  Save this book chapter

Algorithmic Principle of Least Revenue for Finding Market Equilibria

In: Optimization and Its Applications in Control and Data Sciences

Author

Listed:
  • Yurii Nesterov

    (Catholic University of Louvain (UCL))

  • Vladimir Shikhman

    (Catholic University of Louvain (UCL))

Abstract

In analogy to extremal principles in physics, we introduce the Principle of Least Revenue for treating market equilibria. It postulates that equilibrium prices minimize the total excessive revenue of market’s participants. As a consequence, the necessary optimality conditions describe the clearance of markets, i.e. at equilibrium prices supply meets demand. It is crucial for our approach that the potential function of total excessive revenue be convex. This facilitates structural and algorithmic analysis of market equilibria by using convex optimization techniques. In particular, results on existence, uniqueness, and efficiency of market equilibria follow easily. The market decentralization fits into our approach by the introduction of trades or auctions. For that, Duality Theory of convex optimization applies. The computability of market equilibria is ensured by applying quasi-monotone subgradient methods for minimizing nonsmooth convex objective—total excessive revenue of the market’s participants. We give an explicit implementable algorithm for finding market equilibria which corresponds to real-life activities of market’s participants.

Suggested Citation

  • Yurii Nesterov & Vladimir Shikhman, 2016. "Algorithmic Principle of Least Revenue for Finding Market Equilibria," Springer Optimization and Its Applications, in: Boris Goldengorin (ed.), Optimization and Its Applications in Control and Data Sciences, pages 381-435, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-42056-1_14
    DOI: 10.1007/978-3-319-42056-1_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-42056-1_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.