IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-42056-1_13.html
   My bibliography  Save this book chapter

Applying the Gradient Projection Method to a Model of Proportional Membership for Fuzzy Cluster Analysis

In: Optimization and Its Applications in Control and Data Sciences

Author

Listed:
  • Susana Nascimento

    (Universidade Nova de Lisboa)

Abstract

This paper presents a fuzzy proportional membership model for clustering (FCPM). Unlike the other clustering models, FCPM requires that each entity may express an extent of each prototype, which makes its criterion to loose the conventional prototype-additive structure. The methods for fitting the model at different fuzziness parameter values are presented. Because of the complexity of the clustering criterion, minimization of the errors requires the gradient projection method (GPM). We discuss how to find the projection of a vector on the simplex of the fuzzy membership vectors and how the stepsize length of the GPM had been fixed. The properties of the clusters found with the FCPM are discussed. Especially appealing seems the property to keep the extremal cluster prototypes stable even after addition of many entities around the grand mean.

Suggested Citation

  • Susana Nascimento, 2016. "Applying the Gradient Projection Method to a Model of Proportional Membership for Fuzzy Cluster Analysis," Springer Optimization and Its Applications, in: Boris Goldengorin (ed.), Optimization and Its Applications in Control and Data Sciences, pages 353-380, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-42056-1_13
    DOI: 10.1007/978-3-319-42056-1_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-42056-1_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.