IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-30785-5_6.html
   My bibliography  Save this book chapter

Second-Order Optimality Conditions for Broken Extremals and Bang-Bang Controls: Theory and Applications

In: Advances in Mathematical Modeling, Optimization and Optimal Control

Author

Listed:
  • Nikolai P. Osmolovskii

    (University of Technology and Humanities
    Systems Research Institute, Polish Academy of Sciences
    Moscow State University of Civil Engineering)

  • Helmut Maurer

    (Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms–Universität Münster)

Abstract

We survey the results on no-gap second-order optimality conditions (both necessary and sufficient) in the Calculus of Variations and Optimal Control, that were obtained in the monographs Milyutin and Osmolovskii (Calculus of Variations and Optimal Control. Translations of Mathematical Monographs. American Mathematical Society, Providence, 1998) and Osmolovskii and Maurer (Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. SIAM Series Design and Control, vol. DC 24. SIAM Publications, Philadelphia, 2012), and discuss their further development. First, we formulate such conditions for broken extremals in the simplest problem of the Calculus of Variations and then, we consider them for discontinuous controls in optimal control problems with endpoint and mixed state-control constraints, considered on a variable time interval. Further, we discuss such conditions for bang-bang controls in optimal control problems, where the control appears linearly in the Pontryagin-Hamilton function with control constraints given in the form of a convex polyhedron. Bang-bang controls induce an optimization problem with respect to the switching times of the control, the so-called Induced Optimization Problem. We show that second-order sufficient condition for the Induced Optimization Problem together with the so-called strict bang-bang property ensures second-order sufficient conditions for the bang-bang control problem. Finally, we discuss optimal control problems with mixed control-state constraints and control appearing linearly. Taking the mixed constraint as a new control variable we convert such problems to bang-bang control problems. The numerical verification of second-order conditions is illustrated on three examples.

Suggested Citation

  • Nikolai P. Osmolovskii & Helmut Maurer, 2016. "Second-Order Optimality Conditions for Broken Extremals and Bang-Bang Controls: Theory and Applications," Springer Optimization and Its Applications, in: Jean-Baptiste Hiriart-Urruty & Adam Korytowski & Helmut Maurer & Maciej Szymkat (ed.), Advances in Mathematical Modeling, Optimization and Optimal Control, pages 147-201, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-30785-5_6
    DOI: 10.1007/978-3-319-30785-5_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-30785-5_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.