IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-29975-4_4.html
   My bibliography  Save this book chapter

Assessing Basin Identification Methods for Locating Multiple Optima

In: Advances in Stochastic and Deterministic Global Optimization

Author

Listed:
  • Simon Wessing

    (Technische Universität Dortmund)

  • Günter Rudolph

    (Technische Universität Dortmund)

  • Mike Preuss

    (European Research Center for Information Systems (ERCIS))

Abstract

Basin identification is an important ingredient in global optimization algorithms for the efficient use of local searches. An established approach for this task is obtaining topographical information about the objective function from a discrete sample of the search space and representing it in a graph structure. So far, different variants of this approach are usually assessed by evaluating the performance of a whole optimization algorithm using them as components. In this work, we compare two approaches on their own, namely topographical selection and nearest-better clustering, regarding their ability to identify the distinct attraction basins of multimodal functions. We show that both have different strengths and weaknesses, as their behavior is very dependent on the problem instance.

Suggested Citation

  • Simon Wessing & Günter Rudolph & Mike Preuss, 2016. "Assessing Basin Identification Methods for Locating Multiple Optima," Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 53-70, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-29975-4_4
    DOI: 10.1007/978-3-319-29975-4_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-29975-4_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.