IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-29975-4_13.html
   My bibliography  Save this book chapter

Understanding the Impact of Constraints: A Rank Based Fitness Function for Evolutionary Methods

In: Advances in Stochastic and Deterministic Global Optimization

Author

Listed:
  • Eric S. Fraga

    (University College London)

  • Oluwamayowa Amusat

    (University College London)

Abstract

There are design problems where some constraints may be considered objectives as in “It would be great if the solution we obtained had this characteristic.” In such problems, solutions obtained using multi-objective optimisation may help the decision maker gain insight into what is achievable without fully satisfying one of these constraints. A novel fitness function is introduced into a multi-objective population based evolutionary optimisation method, based on a plant propagation algorithm extended to multi-objective optimisation. The optimisation method is implemented and applied to the design of off-grid integrated energy systems for large scale mining operations where the aim is to use local renewable energy generation, coupled with energy storage, to eliminate the need for transporting fuel over large distances. The latter is a desired property and in this chapter is treated as a separate objective. The results presented show that the fitness function provides the desired selection pressure and, when combined with the multi-objective plant propagation algorithm, is able to find good designs that achieve the desired constraint simultaneously.

Suggested Citation

  • Eric S. Fraga & Oluwamayowa Amusat, 2016. "Understanding the Impact of Constraints: A Rank Based Fitness Function for Evolutionary Methods," Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 243-254, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-29975-4_13
    DOI: 10.1007/978-3-319-29975-4_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-29975-4_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.