IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-09683-4_6.html
   My bibliography  Save this book chapter

Sigmoid Data Fitting by Least Squares Adjustment of Second and Third Divided Differences

In: Network Models in Economics and Finance

Author

Listed:
  • Ioannis C. Demetriou

    (University of Athens)

Abstract

We consider the performance of two data smoothing methods that provide sigmoid fits by adjustment of divided differences on some test problems. Thus we investigate the accuracy and the efficiency of the methods for smoothing a variety of data points, our conclusions being drawn from numerical results. The first method is a least squares data smoothing calculation subject to nonnegative third divided differences. The second method is a non-linear least squares data smoothing calculation subject to one sign change in the second divided differences. Both methods employ structured quadratic programming calculations, which take into account the form of the constraints and make efficient use of the banded matrices that occur in the subproblems during the iterations of the quadratic programming calculations. The total work of each method, in practice, is of quadratic complexity with respect to the number of data. Our results expose some weaknesses of the methods. Therefore they may be helpful to the development of new algorithms that are particularly suitable for sigmoid data fitting calculations. Our results expose also some strengths of the methods, which they may be useful to particular scientific analyses, e.g. sigmoid phenomena, and to strategic management practices, i.e. economic substitution.

Suggested Citation

  • Ioannis C. Demetriou, 2014. "Sigmoid Data Fitting by Least Squares Adjustment of Second and Third Divided Differences," Springer Optimization and Its Applications, in: Valery A. Kalyagin & Panos M. Pardalos & Themistocles M. Rassias (ed.), Network Models in Economics and Finance, edition 127, pages 107-126, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-09683-4_6
    DOI: 10.1007/978-3-319-09683-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-09683-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.