IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-04720-1_8.html
   My bibliography  Save this book chapter

Numerical Solution of the Defence Force Optimal Positioning Problem

In: Applications of Mathematics and Informatics in Science and Engineering

Author

Listed:
  • Nicholas J. Daras

    (Hellenic Military Academy)

  • Demetrius Triantafyllou

    (Hellenic Military Academy)

Abstract

In this paper we study the positioning of defender forces in order to handle in an efficient way the forces of the attacker. The scope is to determine the minimum amplitude of territories which the invader will occupy. The defender’s forces should swoop rapidly to any point of the defence locus in order to protect their territories. The selection of the “optimal” position in which the defender’s forces should be placed is a difficult problem and it aims at the minimization of enemy’s penetration. The minimization methods result to non-linear equations and there are many classical numerical algorithms for solving such equations. The most known one is Newton’s method. Since the selection of a suitable initial point is not a trivial task, we will study the behaviour of these numerical procedures for various initial points and small perturbations of the data in order to present stable procedures which compute efficiently the solution of non-linear equations, leading to the optimal selection of the position, on which the forces of the defender should be placed. All the proposed methods are tested for various sets of data and useful conclusions arise. The algorithms are compared as to the computational complexity and stability through error analysis yielding useful results.

Suggested Citation

  • Nicholas J. Daras & Demetrius Triantafyllou, 2014. "Numerical Solution of the Defence Force Optimal Positioning Problem," Springer Optimization and Its Applications, in: Nicholas J. Daras (ed.), Applications of Mathematics and Informatics in Science and Engineering, edition 127, pages 131-149, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-04720-1_8
    DOI: 10.1007/978-3-319-04720-1_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-04720-1_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.