IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-03512-3_5.html
   My bibliography  Save this book chapter

Probabilistic Counterparts of Nonlinear Parabolic Partial Differential Equation Systems

In: Modern Stochastics and Applications

Author

Listed:
  • Yana I. Belopolskaya

    (St. Petersburg State University for Architecture and Civil Engineering)

Abstract

We extend the results of the FBSDE theory in order to construct a probabilistic representation of a viscosity solution to the Cauchy problem for a system of quasilinear parabolic equations. We derive a BSDE associated with a class of quasilinear parabolic system and prove the existence and uniqueness of its solution. To be able to deal with systems including nondiagonal first order terms along with the underlying diffusion process, we consider its multiplicative operator functional. We essentially exploit as well the fact that the system under consideration can be reduced to a scalar equation in an enlarged phase space. This allows to obtain some comparison theorems and to prove that a solution to FBSDE gives rise to a viscosity solution of the original Cauchy problem for a system of quasilinear parabolic equations.

Suggested Citation

  • Yana I. Belopolskaya, 2014. "Probabilistic Counterparts of Nonlinear Parabolic Partial Differential Equation Systems," Springer Optimization and Its Applications, in: Volodymyr Korolyuk & Nikolaos Limnios & Yuliya Mishura & Lyudmyla Sakhno & Georgiy Shevchenko (ed.), Modern Stochastics and Applications, edition 127, pages 71-94, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-03512-3_5
    DOI: 10.1007/978-3-319-03512-3_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-03512-3_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.