IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-031-52459-2_3.html
   My bibliography  Save this book chapter

Heuristic Kalman Algorithm

In: Solving Optimization Problems with the Heuristic Kalman Algorithm

Author

Listed:
  • Rosario Toscano

    (École Nationale d’Ingénieurs de Saint-Etienne)

Abstract

In this chapter a new optimization method is presented, called the Heuristic Kalman Algorithm (HKA). This new algorithm is proposed as an alternative approach for solving continuous non-convex optimization problems. The principle of HKA is to consider explicitly the optimization problem as a measurement process intended to give an estimate of the optimum. A specific procedure, based on the Kalman estimator, was developed to improve the quality of the estimate obtained through the measurement process. A significant advantage of HKA against other metaheuristics lies mainly in the small number of parameters which have to be set by the user. In addition, it is shown that HKA converges almost surely to a near-optimal solution. The efficiency of HKA is evaluated in detail through several non-convex test problems, both in the unconstrained and constrained cases. The results are then compared to those obtained via other metaheuristics. These various numerical experiments show that the HKA has very interesting potentialities for solving non-convex optimization problems, especially with regard to the computation time and the success ratio.

Suggested Citation

  • Rosario Toscano, 2024. "Heuristic Kalman Algorithm," Springer Optimization and Its Applications, in: Solving Optimization Problems with the Heuristic Kalman Algorithm, chapter 0, pages 47-69, Springer.
  • Handle: RePEc:spr:spochp:978-3-031-52459-2_3
    DOI: 10.1007/978-3-031-52459-2_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-031-52459-2_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.