IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-031-21225-3_8.html
   My bibliography  Save this book chapter

Multi-Frequency Polarimetric SAR Data Analysis for Crop Type Classification Using Random Forest

In: Synthetic Aperture Radar (SAR) Data Applications

Author

Listed:
  • Siddharth Hariharan

    (TPCT’s Terna Engineering College)

  • Dipankar Mandal

    (Kansas State University)

  • Siddhesh Tirodkar

    (Indian Institute of Technology Bombay)

  • Vineet Kumar

    (Delft University of Technology)

  • Avik Bhattacharya

    (Indian Institute of Technology Bombay)

Abstract

This chapter investigates multi-frequency (C-, L-, and P-bands) single-date AIRSAR data using Random Forest (RF) based polarimetric parameter selection for crop separation and classification. The RF classifier has an inherent parameter ranking and partial probability plot ability which gives not only the important parameters but also their optimal dynamic range. Crop separation was assessed among crop types by identifying polarimetric parameters having highest difference of Mean Decrease Accuracy (MDA) scores as measured by RF. Earlier studies primarily focused on polarimetric backscattering coefficients for crop analysis. In this study in addition to these parameters, the scattering decomposition powers along with the backscattering ratio parameters were also analyzed and found vital for multi-frequency crop classification. The Yamaguchi model-based decomposition, the Cloude-Pottier and the Touzi decomposition parameters provided complimentary information which were further used for critical analysis of crops in this study. In this study, the classification accuracy using RF was obtained as: C-band (71.9%); L-band (80.7%); P-band (75.8%). The long-stem crops: barley and rapeseed had the best accuracy in L-band (91.7%) and C-band (91.4%), respectively, while for the short-stem broad-leaf crops: sugarbeet (86.2%) in L-band and potatoes (95.4%) in L-band and (94.5%) in P-band, respectively.

Suggested Citation

  • Siddharth Hariharan & Dipankar Mandal & Siddhesh Tirodkar & Vineet Kumar & Avik Bhattacharya, 2022. "Multi-Frequency Polarimetric SAR Data Analysis for Crop Type Classification Using Random Forest," Springer Optimization and Its Applications, in: Maciej Rysz & Arsenios Tsokas & Kathleen M. Dipple & Kaitlin L. Fair & Panos M. Pardalos (ed.), Synthetic Aperture Radar (SAR) Data Applications, pages 195-217, Springer.
  • Handle: RePEc:spr:spochp:978-3-031-21225-3_8
    DOI: 10.1007/978-3-031-21225-3_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-031-21225-3_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.