IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-031-00832-0_1.html
   My bibliography  Save this book chapter

Projection of a Point onto a Convex Set via Charged Balls Method

In: High-Dimensional Optimization and Probability

Author

Listed:
  • Majid E. Abbasov

    (St. Petersburg State University
    Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences)

Abstract

Finding the projection of a point onto a convex set is a problem of computational geometry that plays an essential role in mathematical programming and nondifferentiable optimization. Recently proposed Charged Balls Method allows one to solve this problem for the case when the boundary of the set is given by smooth function. In this chapter, we give an overview of Charged Balls Method and show that the method is applicable also for nonsmooth case. More specifically, we consider the set that is defined by a maximum of a finite number of smooth functions. Obtained results show that even in case of the set with nonsmooth boundary, Charged Balls Method still solves the problem quite competitive effectively in comparison with other algorithms. This is confirmed by the results of numerical experiments.

Suggested Citation

  • Majid E. Abbasov, 2022. "Projection of a Point onto a Convex Set via Charged Balls Method," Springer Optimization and Its Applications, in: Ashkan Nikeghbali & Panos M. Pardalos & Andrei M. Raigorodskii & Michael Th. Rassias (ed.), High-Dimensional Optimization and Probability, pages 1-8, Springer.
  • Handle: RePEc:spr:spochp:978-3-031-00832-0_1
    DOI: 10.1007/978-3-031-00832-0_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-031-00832-0_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.