IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-84721-0_31.html
   My bibliography  Save this book chapter

On Degenerate Boundary Conditions and Finiteness of the Spectrum of Boundary Value Problems

In: Mathematical Analysis in Interdisciplinary Research

Author

Listed:
  • Victor A. Sadovnichii

    (Lomonosov Moscow State University)

  • Yaudat T. Sultanaev

    (Lomonosov Moscow State University)

  • Azamat M. Akhtyamov

    (Russian Academy of Science)

Abstract

It is shown that for the asymmetric diffusion operator the case when the characteristic determinant is identically equal to zero is impossible and the only possible degenerate boundary conditions are the Cauchy conditions. In the case of a symmetric diffusion operator, the characteristic determinant is identically equal to zero if and only if the boundary conditions are false–periodic boundary conditions and is identically equal to a constant other than zero if and only if its boundary conditions are generalized Cauchy conditions. All degenerate boundary conditions for a spectral problem with a third-order differential equation y′′′(x) = λ y(x) are described. The general form of degenerate boundary conditions for the fourth-order differentiation operator D4 is found. Twelve classes of boundary value eigenvalue problems are described for the operator D4, the spectrum of which fills the entire complex plane. It is known that spectral problems whose spectrum fills the entire complex plane exist for differential equations of any even order. John Locker posed the following problem (eleventh problem): Are there similar problems for odd-order differential equations? A positive answer is given to this question. It is proved that spectral problems, the spectrum of which fills the entire complex plane, exist for differential equations of any odd order. Thus, the problem of John Locker is resolved. John Locker posed a problem (tenth problem): Can a spectral boundary value problem have a finite spectrum? Boundary value problems with a polynomial occurrence of a spectral parameter in a differential equation are considered. It is shown that the corresponding boundary value problem can have a predetermined finite spectrum in the case when the roots of the characteristic equation are multiple. If the roots of the characteristic equation are not multiple, then there can be no finite spectrum. Thus, John Locker’s tenth problem is resolved.

Suggested Citation

  • Victor A. Sadovnichii & Yaudat T. Sultanaev & Azamat M. Akhtyamov, 2021. "On Degenerate Boundary Conditions and Finiteness of the Spectrum of Boundary Value Problems," Springer Optimization and Its Applications, in: Ioannis N. Parasidis & Efthimios Providas & Themistocles M. Rassias (ed.), Mathematical Analysis in Interdisciplinary Research, pages 731-779, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-84721-0_31
    DOI: 10.1007/978-3-030-84721-0_31
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-84721-0_31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.