IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-75178-4_10.html
   My bibliography  Save this book chapter

Synthetic-to-Real Domain Adaptation and Refinement

In: Synthetic Data for Deep Learning

Author

Listed:
  • Sergey I. Nikolenko

    (Synthesis AI
    Steklov Institute of Mathematics)

Abstract

Domain adaptation is a set of techniques aimed to make a model trained on one domain of data to work well on a different target domain. In this chapter, we give a survey of domain adaptation approaches that have been used for synthetic-to-real adaptation, that is, methods for making models trained on synthetic data work well on real data, which is almost always the end goal. We distinguish two main approaches. In synthetic-to-real refinement input synthetic data is modified, usually to be made more realistic, and we can actually see the modified data. In model-based domain adaptation, it is the training process or the model structure that changes to ensure domain adaptation, while the data remains as synthetic as it has been. We will discuss neural architectures for both approaches, including many models based on generative adversarial networks.

Suggested Citation

  • Sergey I. Nikolenko, 2021. "Synthetic-to-Real Domain Adaptation and Refinement," Springer Optimization and Its Applications, in: Synthetic Data for Deep Learning, chapter 0, pages 235-268, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-75178-4_10
    DOI: 10.1007/978-3-030-75178-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-75178-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.