IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-61887-2_6.html
   My bibliography  Save this book chapter

Structure and Optimisation in Computational Harmonic Analysis: On Key Aspects in Sparse Regularisation

In: Harmonic Analysis and Applications

Author

Listed:
  • Anders C. Hansen

    (DAMTP, Centre for Mathematical Sciences, University of Cambridge)

  • Bogdan Roman

    (DAMTP, Centre for Mathematical Sciences, University of Cambridge)

Abstract

Computational harmonic analysis has a rich history spanning more than half a century, where the last decade has been strongly influenced by sparse regularisation and compressed sensing. The theory has matured over the last years, and it has become apparent that the success of compressed sensing in fields like magnetic resonance imaging (MRI), and imaging in general, is due to specific structures beyond just sparsity. Indeed, structured sampling and the structure of images represented in X-lets, for example, sparsity in levels, are key ingredients. The field relies on the crucial assumption that one can easily compute minimisers of convex optimisation problem. This assumption is false in general. One can typically easily compute the objective function of convex optimisation problems, but not minimisers. However, due to the specific features in compressed sensing, one can actually compute the desired minimisers fast and reliably to sufficient precision. In short, as we demonstrate here: the success of sparse regularisation and compressed sensing is due to specific key structures that allow for a beneficial interaction between harmonic analysis and optimisation.

Suggested Citation

  • Anders C. Hansen & Bogdan Roman, 2021. "Structure and Optimisation in Computational Harmonic Analysis: On Key Aspects in Sparse Regularisation," Springer Optimization and Its Applications, in: Michael Th. Rassias (ed.), Harmonic Analysis and Applications, pages 125-172, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-61887-2_6
    DOI: 10.1007/978-3-030-61887-2_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-61887-2_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.