IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-55857-4_13.html
   My bibliography  Save this book chapter

Diffusion on Dynamical Interbank Loan Networks

In: Discrete Mathematics and Applications

Author

Listed:
  • John Leventides

    (National and Kapodistrian University of Athens (NKUA))

  • Nick Poulios

    (National and Kapodistrian University of Athens (NKUA))

Abstract

In this paper we study the effect of diffusion method to interbank networks in concept of connected, directed and weighted networks. We consider networks of n different banks which they exchange funds (loans) and the main feature is how the leverages of banks can be choosen to improve the financial stability of the network. This is done by considering differential equations of diffusion type. It is well known that banks exchange funds in the form of credit which are supported partly by the banks own capital. The ratio of their assets by the capital constitute the leverage of the bank and for minimization of risk purposes this ratio has to be kept within reasonable limits. The aim of this paper is to show how ideas from diverse domains such as diffusion, differential equations and graph theory can be used to demonstrate how financial risk can be controlled in this type of interbank networks. Diffusion acts as a stabilization process by the flow of funds from banks of higher leverage to those of lower. This process leads to equilibrium and stops either in a state of equal leverages between banks or whenever this is not possible in a final state which is more robust compared to the initial. The relation between the initial and final values of the interbank network may be described by a projection operator.

Suggested Citation

  • John Leventides & Nick Poulios, 2020. "Diffusion on Dynamical Interbank Loan Networks," Springer Optimization and Its Applications, in: Andrei M. Raigorodskii & Michael Th. Rassias (ed.), Discrete Mathematics and Applications, pages 339-367, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-55857-4_13
    DOI: 10.1007/978-3-030-55857-4_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-55857-4_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.