IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-55857-4_10.html
   My bibliography  Save this book chapter

Exponential Variational Integrators Using Constant or Adaptive Time Step

In: Discrete Mathematics and Applications

Author

Listed:
  • Odysseas Kosmas

    (University of Manchester)

  • Dimitrios Vlachos

    (University of Peloponnese)

Abstract

In this book article, at first we survey some recent advances in variational integrators focusing on the class of them known as exponential variational integrators, applicable in finite dimensional mechanical systems. Since these integrators are based on the space and time discretization, we start with a brief summary of the general development of the discrete mechanics and its application in describing mechanical systems with space-time integration algorithms. We, then, make an attempt to treat briefly in depth only the particular topic of adaptive time step exponential variational integrators. To this aim, the action integral along any curve segment is defined using a discrete Lagrangian that depends on the endpoints of the segment and on a number of intermediate points of interpolation. This Lagrangian is then, at any time interval, written as a weighted sum of the Lagrangians corresponding to a set of the chosen intermediate points to obtain high order integrators. The positions and velocities are interpolated here using special exponential functions. Finally, we derive exponential higher order variational integration methods for the numerical integration of systems with oscillatory solutions. The obtained exponential variational integrators using constant or adaptive time step are tested for the numerical solution of several problems showing their good behavior to track oscillatory solutions. Furthermore, we use the space-time geodesic approach of classical mechanics to explore whether the new methodology may be effective in adaptive time schemes.

Suggested Citation

  • Odysseas Kosmas & Dimitrios Vlachos, 2020. "Exponential Variational Integrators Using Constant or Adaptive Time Step," Springer Optimization and Its Applications, in: Andrei M. Raigorodskii & Michael Th. Rassias (ed.), Discrete Mathematics and Applications, pages 237-258, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-55857-4_10
    DOI: 10.1007/978-3-030-55857-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-55857-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.