IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-28565-4_10.html
   My bibliography  Save this book chapter

Optimal Planning of Electric Power Systems

In: Optimization in Large Scale Problems

Author

Listed:
  • Adam F. Abdin

    (Laboratoire Genie Industriel, CentraleSupelec, Universite Paris-Saclay)

  • E. Zio

    (Chair Systems Science and the Energy Challenge, Fondation Electricie de France (EDF), CentraleSupelec, Universite Paris-Saclay
    Mines ParisTech, PSL Research University
    Department of Energy, Politecnico di Milano
    Kyung Hee University)

Abstract

Electric power systems provide an essential service to any modern society. They are inherently large- scale dynamic systems with a high degree of spatio-temporal complexity. Their reliability and security of supply are central considerations in any regional or global energy-related policy. Methods for power systems planning have typically ensured key operational reliability aspects under normal operating conditions and in response to anticipated demand variability, uncertainty and supply disruptions, e.g. due to errors in load forecasts and to unexpected generation units outages. Solutions have been commonly built on capacity adequacy and operating reserves requirements, among others. However, recent objectives for environmental sustainability and the threats of climate change are challenging the reliability requirements of power systems in various new ways and necessitate adapted planning methods. The present chapter describes some of the issues related to the development of the integrated techno-economic modeling and robust optimization framework that is needed today for power systems planning adapted. Such planning framework should cope with the new context by addressing the challenges associated with the sustainability targets of future power systems, and most notably ensuring operational flexibility against the variability of renewable energy sources, ensuring resilience against extreme weather events and ensuring robustness against the uncertainties inherent in both the electric power supply and system load. This chapter presents the context by summarizing the main sustainability drivers for the current (and future) power systems planning and operation. These well-known sustainability targets have become a worldwide imperative in all sectors of economic activity, and are embedded within almost any regulatory or policy dialogue. We will, then, review the particular transformation undergoing in the electric power sector planning, not only driven by the sustainability goals, but also by the more general technological and/or regulatory advancements. The main power systems planning related challenges are detailed, along with a thorough review of previous research works and research gaps. Then, key research questions and ensuing objectives are formulated.

Suggested Citation

  • Adam F. Abdin & E. Zio, 2019. "Optimal Planning of Electric Power Systems," Springer Optimization and Its Applications, in: Mahdi Fathi & Marzieh Khakifirooz & Panos M. Pardalos (ed.), Optimization in Large Scale Problems, pages 53-65, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-28565-4_10
    DOI: 10.1007/978-3-030-28565-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Andrés Rengel & Alexander Aguila Téllez & Leony Ortiz & Milton Ruiz, 2023. "Optimal Insertion of Energy Storage Systems Considering the Economic Dispatch and the Minimization of Energy Not Supplied," Energies, MDPI, vol. 16(6), pages 1-26, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-28565-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.