IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-27407-8_13.html
   My bibliography  Save this book chapter

Operator Inequalities Involved Wiener–Hopf Problems in the Open Unit Disk

In: Differential and Integral Inequalities

Author

Listed:
  • Rabha W. Ibrahim

    (University of Malaya)

Abstract

In this effort, we employ some of the linear differential inequalities to achieve integral inequalities of the type Wiener–Hopf problems (WHP). We utilize the concept of subordination and its applications to gain linear integral operators in the open unit disk that preserve two classes of analytic functions with a positive real part. Linear second-order differential inequalities play a significant role in the field of complex differential equations. Our study is based on a neighborhood containing the origin. Therefore, the Wiener–Hopf problem is decomposed around the origin in the open unit disk using two different classes of analytic functions. Moreover, we suggest a generalization for WHP by utilizing some classes of entire functions. Special cases are given in the sequel as well. A necessary and sufficient condition for WHP to be averaging operator on a convex domain (in the open unit disk) is given by employing the subordination relation (inequality).

Suggested Citation

  • Rabha W. Ibrahim, 2019. "Operator Inequalities Involved Wiener–Hopf Problems in the Open Unit Disk," Springer Optimization and Its Applications, in: Dorin Andrica & Themistocles M. Rassias (ed.), Differential and Integral Inequalities, pages 423-433, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-27407-8_13
    DOI: 10.1007/978-3-030-27407-8_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-27407-8_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.