IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-22788-3_7.html
   My bibliography  Save this book chapter

An Approximation-Based Approach for Chance-Constrained Vehicle Routing and Air Traffic Control Problems

In: Large Scale Optimization in Supply Chains and Smart Manufacturing

Author

Listed:
  • Lijian Chen

    (University of Dayton)

Abstract

We proposed a polynomial approximation-based approach to solve a specific type of chance-constrained optimization problem that can be equivalently transformed into a convex program. This type of chance-constrained optimization is in great needs of many applications, and most solution techniques are problem-specific. Our essential contribution is to provide an all-purpose solution approach through Monte Carlo and establish the linkage between our obtained optimal solution with the true optimal solution. Thanks to fast-advancing computer hardware, our method would be increasingly appealing to businesses, including small businesses. We present the numerical results including the air traffic flow management (ATFM) and the capacitated routing problem (CVRP) with stochastic demand to show that our approach with Monte Carlo will yield high-quality, timely, and stable solutions. We apply the approach to the ATFM problem to efficiently solve the weather-affected traffic flow management problem. Since there are massive independent approximation processes in the polynomial approximation-based approach, a distributed computing framework is designed to carry out the computation. For the CVRP problem, we conclude that our chance-constrained method has some strategic advantages to serve a logistics company well when resource costs and service guarantees are of concern.

Suggested Citation

  • Lijian Chen, 2019. "An Approximation-Based Approach for Chance-Constrained Vehicle Routing and Air Traffic Control Problems," Springer Optimization and Its Applications, in: Jesús M. Velásquez-Bermúdez & Marzieh Khakifirooz & Mahdi Fathi (ed.), Large Scale Optimization in Supply Chains and Smart Manufacturing, pages 183-239, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-22788-3_7
    DOI: 10.1007/978-3-030-22788-3_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-22788-3_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.